ON Q²-DEPENDENCE OF THE SUM RULES FOR $g_1(x, Q^2)$

B. L. Ioffe ITEP 117259 Moscow, USSR

I wish to make a remark about Q^2 -dependence of the function $G_1^p(x, Q^2) = (m^2/\nu) \cdot g_1^p(x, Q^2)$ in the region of intermediate Q^2 . At intermediate $Q^2 \approx 1-3 \text{ GeV}^2$, the integral $\int (d\nu/\nu) G_1^p(\nu, Q^2)$ is dominated by the isobar $\Delta(1232)$ contribution. Let us consider the Q^2 -dependence of isobar electroproduction. As can be shown from the chiral invariance^{1,2} at large Q^2 , the isobar electroproduction cross section is dominated by $\sigma_{1/2}(\sigma_{1/2} \gg \sigma_{3/2})$ where $\sigma_{1/2}$ and $\sigma_{3/2}$ are the cross sections corresponding to projections 1/2 and 3/2 of the total photon-nucleon spin upon the photon momentum direction in the virtual photon-proton c.m.s.). Therefore the asymmetry $A_1^p = (\sigma_{1/2} - \sigma_{3/2})/2\sigma_T$ is positive and $G_1^p > 0$. However of the values of Q^2 which are presently accessible to experiment $(Q^2 < 3 \text{ GeV}^2)$, the situation is reversed, $\sigma_{1/2} \ll \sigma_{3/2}$ and $A_1^p < 0$, $G_1^p < 0$ (magnetic dipole transition is dominating). This fact may explain, at least partly, why we expect the change of sign in the sum rule $\int (d\nu/\nu) G_1^p(\nu, Q^2)$, when we go from large Q^2 to $Q^2 = 0.^{1,2,3}$ It is necessary to remark that according to isospin invariance, the isobar contributions cancel in the difference $G_1^p - G_1^n$. This may be the reason why Bjorken sum rule permits a smooth extrapolation from large Q^2 to $Q^2 = 0$.

References

- 1. B. L. Ioffe, Phys. Rev. Lett. 63B, 425 (1976).
- 2. B. L. Ioffe, V. A. Khoze, L. N. Lipatov, Hard Processes, Vol. I, North Holland, Amsterdam 1984, p. 62, 255.
- 3. V. M. Belyaev, B. L. Ioffe, Ya. I. Kogan, Phys. Lett. 151B, 290 (1985).